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Large-scale multitrait genome-wide 
association analyses identify hundreds of 
glaucoma risk loci

Glaucoma, a leading cause of irreversible blindness, is a highly heritable 
human disease. Previous genome-wide association studies have identified 
over 100 loci for the most common form, primary open-angle glaucoma. 
Two key glaucoma-associated traits also show high heritability: intraocular 
pressure and optic nerve head excavation damage quantified as the 
vertical cup-to-disc ratio. Here, since much of glaucoma heritability 
remains unexplained, we conducted a large-scale multitrait genome-wide 
association study in participants of European ancestry combining primary 
open-angle glaucoma and its two associated traits (total sample size over 
600,000) to substantially improve genetic discovery power (263 loci). We 
further increased our power by then employing a multiancestry approach, 
which increased the number of independent risk loci to 312, with the vast 
majority replicating in a large independent cohort from 23andMe, Inc. 
(total sample size over 2.8 million; 296 loci replicated at P < 0.05, 240 after 
Bonferroni correction). Leveraging multiomics datasets, we identified many 
potential druggable genes, including neuro-protection targets likely to act 
via the optic nerve, a key advance for glaucoma because all existing drugs 
only target intraocular pressure. We further used Mendelian randomization 
and genetic correlation-based approaches to identify novel links to other 
complex traits, including immune-related diseases such as multiple 
sclerosis and systemic lupus erythematosus.

Primary open-angle glaucoma (POAG) is a leading cause of irrevers-
ible blindness world-wide1,2. It is often asymptomatic until later  
stages, causing optic nerve damage manifested by cupping and visual 
field loss3. Large vertical cup-to-disc ratio (VCDR) and elevated intraoc-
ular pressure (IOP) are two key POAG endophenotypes4. POAG is one 
of the most heritable common diseases5, with previous genome-wide 
association studies (GWASs) identifying 127 loci, collectively  
explaining 9.4% of the familial risk6. However, these loci only  
account for a moderate fraction of the heritability, many risk loci  
have not been discovered and their biological functions remain  
largely unknown.

Multitrait methods have demonstrated substantial improvements 
in power for uncovering novel genetic loci when incorporating data from 
related endophenotypes7. Both VCDR and IOP are highly genetically cor-
related with glaucoma (genetic correlation 0.50 [s.e.m. = 0.05] and 0.71 
[s.e.m. = 0.04], respectively)8. In recent years, the number of samples with 
IOP and VCDR measurements has significantly increased. For instance, 
advances in artificial intelligence (AI) provided a new opportunity for 
accurate phenotyping of the optic nerve head, leading to an increased 
number of samples with VCDR9. In our previous AI-based GWAS, we 
predicted VCDR values for 282,100 fundus images based on convolu-
tional neural network (CNN) models9. In parallel, IOP measurements 
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POAG MTAG analysis of European ancestry population identifies 263 
loci. In the MTAG analysis combining GWASs of POAG, VCDR and IOP in 
the European ancestry population, we identified 263 independent loci 
for POAG; 81 loci were novel (not within ±500 kilobases (kb) of previously 
known loci; Fig. 2a, Supplementary Table 2, Extended Data Figs. 1–3 and 
Supplementary Data 1). The proportion of the familial risk explained by 
the genome-wide significant independent SNPs was 14.1%. This repre-
sents a 50% increase over and above the previously reported estimate 
(9.4%), based on a previous meta-analysis that identified 127 SNPs6. The 
81 completely novel loci (not within ±500 kb of previously known loci) 
contributed 2.5%, with the remainder of the difference (2.2%) attribut-
able to additional independent SNPs within previously reported loci. 
The identified lead SNPs were then replicated in an independent cohort 
using 23andMe (261 SNPs available in the 23andMe study): 60% of SNPs 
(n = 156) passed the genome-wide significance level (P < 5 × 10−8) in the 
23andMe study, 85% of SNPs (n = 223) were significant after Bonferroni 
correction (P < 0.00019) and 98% of SNPs (n = 256) reached a nominal 
significance level (P < 0.05). We found a very high concordance of the 
effect sizes between the MTAG discovery and the 23andMe replication 
(Pearson’s coefficient 0.97, P = 5.99 × 10−154; Fig. 3a and Extended Data 
Figs. 1 and 4). In the MTAG analysis, the maximum false discovery rate 
(FDR) for POAG was 0.004, suggesting no evidence of inflation due to 
violation of the homogeneity assumption in the MTAG analysis.

The top ten novel loci included SNPs located in or near FOXF1, 
CTNND1, FENDRR, GNB3, FLNB, COL8A1, SLC30A10, VAV2, MYO16 and 
HSPA12A (Supplementary Table 2). FOXF1 is a forkhead transcription 
factor gene on 6p25, disruption of which has been reported to cause 
a range of ocular developmental abnormalities associated with glau-
coma10,11. The lead SNP rs1728414 of FOXF1 was associated with POAG at 
P = 1.45 × 10−6 in the previous POAG GWAS6, and reached P = 1.97 × 10−18 
in the current MTAG POAG GWAS. This SNP also reached genome-wide 
significance level in our 23andMe replication dataset (P = 2.16 × 10−25), 
confirming that our MTAG approach can identify novel POAG loci when 
the effective sample size was dramatically increased.

are also available from multiple large-scale biobanks (n > 150,000). This 
information greatly expands the effective sample size for glaucoma in 
a multitrait framework and substantially enhances power for glaucoma 
gene discovery. Moreover, as VCDR and IOP are not strongly correlated 
with each other (genetic correlation 0.22 [s.e.m. = 0.03])8, a large-scale 
analysis has the potential to uncover distinct genetic signals from IOP 
and VCDR; VCDR signals are particularly interesting as these may help 
uncover putative ‘neuro-protection’ drug candidates.

Herein, leveraging new and existing genetic data for POAG, VCDR 
and IOP, we perform a large-scale multitrait analysis of GWAS (MTAG) to 
identify novel POAG loci. We integrate data across different ancestries 
to aid in fine mapping. We utilize a range of omics datasets to improve 
our understanding of the underlying biological mechanisms for POAG, 
leading to improved druggable target discovery for this blinding dis-
ease. We also exploit the very large effective sample size to conduct 
genetic causal inference analysis to assess the relationships between 
a wide range of complex diseases/traits and POAG susceptibility.

Results
Study design
The study design is illustrated in Fig. 1 (see also Supplementary Table 1).  
We first performed an MTAG in the European ancestry population, 
including GWASs for POAG (29,241 cases and 350,181 controls) and its 
two key endophenotypes, VCDR (n = 111,724) and IOP (n = 153,604). 
The identified novel POAG loci from MTAG were then replicated in a 
large-scale independent glaucoma GWAS (23andMe, Inc. study, 84,910 
cases and 2,736,075 controls). We further conducted a multiancestry 
meta-analysis for POAG, combining the MTAG POAG output from the 
European ancestry population and samples from Asian (6,935 cases and 
39,588 controls) and African (3,281 cases and 2,791 controls) ancestry 
populations. We applied a variety of fine-mapping and post-GWAS func-
tional analytical approaches to prioritize the genetic findings, identify 
druggable targets and characterize potential biological mechanisms 
underlying POAG.

POAG
IGGC POAG (15,229/177,473)
UKB glaucoma (11,239/137,621)
CLSA glaucoma (1,358/16,455)
MGB Biobank glaucoma (1,415/18,632)

VCDR
UKB VCDR (adjust DD) (68,240)
CLSA VCDR (adjust DD) (18,304)
IGGC VCDR (25,180)

IOP 
UKB IOP (103,914)
CLSA IOP (18,421)
IGGC IOP (31,269)

POAG MTAG in European
Cross-ancestry meta-analysis

POAG MTAG in European
IGGC POAG in Asian (6,935/39,588) 
IGGC POAG in African (3,281/2,791)

Replication in 23andMe

23andMe glaucoma (84,910/2,736,075)

A. 263 independent loci from POAG MTAG in European,
81 were novel.

B. 156 (60%) SNPs also genome-wide significant in
23andMe (P < 5 × 10–8), 223 (85%) passed Bonferonni 
correction (P < 0.0002) and 256 (98%) passed nominal 
significance level (P < 0.05).

C. Pearson’s coe�icient between POAG MTAG and
23andMe replication is 0.966 (P = 5.99 × 10–154).

A. 312 independent loci from POAG multiancestry 
meta-analysis, 109 were novel.

B. 169 (56%) SNPs also genome-wide significant in
23andMe (P < 5 × 10–8), 240 (79%) passed Bonferonni
correction (P < 0.00017) and 296 (98%) passed nominal
significance level (P < 0.05).

C. Pearson’s coe�icient between POAG MTAG and
23andMe replication is 0.958 (P = 1.22 × 10–164).

Novel POAG loci indentification

Rare variant association from exome sequencing: genes 
influence glaucoma risk through both rare and common
variants (OPTN, FKBP9, LTBP2)

Gene-based and pathway analysis: 355 significant genes
and 32 pathways

Classify POAG loci into VCDR- or IOP-specific SNPs:
92 VCDR SNPs and 171 IOP SNPs 

e/sQTL colocalization analysis: 139 (52.9%) of the MTAG 
European POAG loci and 148 (47.4%) in multiancestry
GWAS

TWAS: 86 genes associated POAG risk

Plasma proteome on risk of POAG: 33 proteins associated 
with risk of POAG

Prioritization of drug targets for POAG: Identifying 69 
potential drug targets for POAG, 17 druggable genes with
at least two levels of genetic evidence

Genetic correlated traits (LDSC): 24 traits that were
genetically correlated with POAG, VCDR or IOP

MR: 14 traits that were associated with POAG, including
multiple sclerosis, systemic lupus erythematosus and 
T2D

Post-GWAS analysis and gene-prioritization   

Fig. 1 | Study design. MGB Biobank, Mass General Brigham Biobank; DD, disc diameter; LDSC, linkage disequilibrium score regression.
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The identified POAG loci from the European ancestry population 
were compared with POAG GWASs from Asian and African ancestry 
populations. The Pearson’s coefficient was 0.77 (P = 6.9 × 10−45) and 
0.507 (P = 3.8 × 10−17) in Asian and African ancestry populations, respec-
tively (Fig. 3c,d), suggesting moderately high concordance across 
different ancestries.

Multiancestry meta-analysis identifies 312 POAG loci. We then con-
ducted a multiancestry meta-analysis using the POAG MTAG output in 
the European ancestry population and POAG GWASs from Asian and 
African ancestry populations. In total, we identified 312 independent 
loci; 109 loci were novel (Fig. 2b, Supplementary Table 3, Extended Data 
Fig. 5 and Supplementary Data 2). We further replicated the loci from 
multiancestry meta-analysis in the 23andMe study (302 SNPs available 
in 23andMe): 169 SNPs (56%) passed the genome-wide significance 
level (P < 5 × 10−8) in the 23andMe study, 240 SNPs (79%) passed Bonfer-
roni correction (P < 0.00017) and 296 SNPs (98%) reached a nominal 
significance level (P < 0.05). Overall, we found a high concordance of 
effect sizes between the multiancestry meta-analysis and the 23andMe 

replication dataset (Pearson’s coefficient 0.96, P = 1.22 × 10−164; Fig. 3b). 
Many of the novel loci represent druggable targets (described further 
below in ‘Prioritization of drug targets for POAG’ section).

Comparison with rare variant association results from exome 
sequencing. We compared the identified common variant POAG 
loci from our GWAS approach with rare variant association analysis 
from exome sequencing12. We identified a common variant rs281857 
near OPTN associated with POAG. OPTN harbors several well-known 
high-penetrance glaucoma risk variants13. The variant rs281857 was 
replicated in the 23andMe cohort (P = 1.97 × 10−7) and had a small but 
detectable effect on both IOP (P = 0.0052) and VCDR (P = 0.0036); 
rs281857 is in linkage equilibrium with both the rare Mendelian dis-
ease variants and the reported common variant (rs11258194) in the 
report by Rezaie et al.13. We found no links between rs281857 and OPTN 
expression, and the specific mechanisms for how rs281857 alters glau-
coma risk are unclear. Other significant genes identified in rare variant 
gene-based association analysis included FKBP9, LTBP2, COL2A1 and the 
well-known glaucoma gene MYOC. We found that FKBP9 is 400 kb from 
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Fig. 2 | Manhattan plots displaying POAG GWAS P values. a, Plot shows 263 
loci from POAG MTAG in the European ancestry population. b, Plot shows 312 
loci from POAG multiancestry meta-analysis. In these plots, the y axis shows the 
P values of SNPs in log–log scale. The red horizontal line is the genome-wide 

significance level at P = 5 × 10−8. SNPs with P < 1 × 10−4 are not shown in the plots. 
Previously unknown loci are highlighted with red dots, and the nearest gene 
names are in black text. Known SNPs are highlighted with purple dots, and the 
nearest gene names are in purple text. All tests were two-sided.
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the common SNP rs1544557 in the POAG MTAG GWAS, LTBP2 is 20 kb 
from the common POAG SNP rs754634 and COL2A1 is associated with 
VCDR (lead SNP rs12821310)8. Our findings are in keeping with other 
complex diseases where a gene can influence disease risk through both 
rare and common variants.

Gene-based and pathway analysis. The MTAG per-SNP results were 
used as input for gene-based analysis, identifying 355 significant genes 
for POAG after adjusting for multiple testing (Bonferroni correction, 
P < 2.68 × 10−6). Of the 355 significant genes, 304 genes were near the 
genome-wide significant SNPs (Supplementary Table 4). In the pathway 
analysis based on the gene-based results, we uncovered 32 pathways 
after Bonferroni correction (P < 3.23 × 10−6) (Supplementary Table 5). 
Implicated pathways included those involved in collagen formation, 
blood vessel development and cardiovascular system development.

Classification of POAG loci into VCDR- or IOP-specific SNPs. Based 
on a hierarchical clustering approach, we classified the 263 MTAG POAG 
loci of European ancestry into SNPs that were more likely to be associ-
ated with VCDR (n = 92) or IOP (n = 171) (Fig. 4a and Supplementary 
Table 2, column ‘assign_SNP’). Overall, for the set of SNPs clustered 
as VCDR-specific SNPs, the effect of each SNP on VCDR showed a very 

high concordance with the MTAG POAG effect size (Fig. 4b); the same 
was true for IOP-specific SNPs (Fig. 4c). The classification of VCDR- and 
IOP-specific SNPs from the clustering approach was consistent with 
a multitrait colocalization method, where posterior probability was 
used to support a colocalization of each POAG locus with VCDR or 
IOP (Extended Data Fig. 6 and Supplementary Table 6). The classified 
VCDR-specific SNPs were used to identify potential ‘neuro-protection’ 
drug targets (described further below in ‘Prioritization of drug targets 
for POAG’ section).

Gene expression/alternative splicing quantitative trait locus colo-
calization analysis prioritizes causal genes in POAG loci. Using the 
Bayesian colocalization method eCAVIAR, we tested whether any of the 
gene expression quantitative trait loci (eQTLs) and alternative splicing 
quantitative trait loci (sQTLs) in 49 Genotype-Tissue Expression (GTEx) 
tissues or retina tissue share one or more causal variants with the MTAG 
or multiancestry POAG loci. Target genes of the colocalizing eQTLs/
sQTLs may be causal to POAG. We found significant colocalization with 
one or more eQTLs/sQTLs for 139 (52.9%) of the replicated MTAG POAG 
loci in European ancestry, 40 of which are novel loci (Supplementary 
Table 7), and for 148 (47.4%) of the replicated multiancestry loci, 38 
of which are novel loci (Supplementary Table 8). The colocalization 
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Fig. 3 | Comparison of the effect sizes for genome-wide significant 
independent SNPs. a, Plot shows 261 (two SNPs were unavailable in 23andMe) 
genome-wide significant independent SNPs identified from POAG MTAG in 
the European population versus glaucoma GWAS in 23andMe. The Pearson’s 
coefficient is 0.966 (P = 5.99 × 10−154, n = 261 independent SNPs). b, Plot shows 
effect sizes for 302 (10 SNPs were unavailable in 23andMe) genome-wide 
significant independent SNPs identified from the POAG multiancestry  

meta-analysis versus glaucoma GWAS in 23andMe. The Pearson’s coefficient is 
0.958 (P = 1.22 × 10−164, n = 302 independent SNPs). In a and b, previously unknown 
SNPs are colored in red. c,d, Plots (n = 261 independent SNPs) show POAG MTAG 
from the European ancestry population versus POAG GWAS from Asian (c) and 
African (d) ancestry populations. The dots show the effect sizes of SNPs, and the 
error bars show the 95% confidence interval of the estimations of SNP effect sizes. 
AFR, African ancestry; ASN, Asian ancestry; EUR, European ancestry.
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analysis proposed on average 3.8 ± 0.55 causal genes per locus, with a 
single gene proposed for 22% of the loci (Supplementary Tables 7 and 8).

Transcriptome-wide association study identifies genes associated 
with risk of POAG. In the transcriptome-wide association study (TWAS) 
analysis using retinal tissue and MTAG POAG GWAS summary statistics 
in the European ancestry population, we identified 86 genes that were 
associated with POAG risk after Bonferroni correction (Supplementary 
Table 9). Of the 86 genes, 20 genes had no genome-wide significant 
SNPs within the gene (best GWAS SNP P > 5 × 10−8). From the TWAS 
analysis, we prioritized potential causal genes. For instance, FOXF1 
was again identified from TWAS as a strong candidate gene resulting 
from polymorphism at the top novel SNP rs1728414 (chr16:86393405).

Mapping the effects of plasma proteome on risk of POAG. Using the 
MTAG POAG GWAS summary statistics and large-scale protein quan-
titative trait locus (pQTL) associations of European ancestry, we per-
formed Mendelian randomization (MR) and identified 33 proteins that 
were potentially causally associated with risk of POAG (FDR adjusted 
P < 0.05; Supplementary Table 10), including the protein encoded by 
ENG that was also identified in the TWAS analysis based on retinal tissue. 
Of the 33 identified proteins, 15 and 20 were also associated with VCDR 
and IOP (FDR adjusted P < 0.05), respectively (Supplementary Table 
10). We then performed a proteome-wide association study (PWAS) 
using an independent proteomics dataset to train prediction models 
for genetically imputing proteins, and ten proteins passed Bonferroni 
correction (P < 0.05/1308 = 3.79 × 10−5; Supplementary Table 11).

Prioritization of drug targets for POAG. Leveraging multiple lines of 
genetic evidence (that is, genome-wide significant loci or gene-based 
results from MAGMA, TWAS significant genes based on eQTL data 
in retina, eQTL/sQTL colocalization in GTEx tissues or retina, and 
MR-supported putative causal proteins based on pQTL data in plasma), 
we identified 69 potential drug target genes for POAG (Supplementary 
Table 12). Of these, we prioritized 17 druggable genes with at least two 
levels of genetic evidence (Table 1); for example, COL11A1 and CYP26A1 
were supported with proximity to the lead GWAS SNPs, TWAS in retina 

and eQTL colocalization in several tissues; NDUFS3 was supported with 
MAGMA gene-based test, TWAS in retina and eQTL colocalization in 
several tissues; and ENG was supported with TWAS in retina and pQTLs 
in plasma. Examples of the existing drugs targeting these genes include 
collagenase clostridium histolyticum and ocriplasmin (collagen hydro-
lytic enzymes) targeting COL11A1; talarozole, a cytochrome P450 26A1 
inhibitor (the protein encoded by CYP26A1); metformin and ME-344 
(mitochondrial complex I inhibitors) targeting NDUFS3; and carotuxi-
mab, an Endoglin inhibitor (the protein encoded by ENG). In addition, 
we highlighted several drugs targeting genes that increase the risk of 
POAG, most likely through affecting VCDR, independent of IOP (without 
an apparent effect on IOP; Table 1): for example, CHEK2, encoding a cell 
cycle regulator and putative tumor suppressor; RPE65, which encodes 
retinoid isomerohydrolase, a component of the vitamin A visual cycle 
in retinal rod and cone photoreceptors14; and TNFSF13B, which encodes 
a tumor necrosis factor ligand family. These VCDR genes are potential 
targets for development of neuroprotective treatments for POAG, which 
currently are not available (see more details in Discussion section).

Traits genetically associated with POAG. From bivariate genetic cor-
relation analysis of 1,347 GWAS summary statistics for complex diseases 
or traits, we identified 24 traits that were genetically correlated with 
POAG, VCDR or IOP after FDR correction (Supplementary Table 13 and 
Extended Data Fig. 7). For example, cognitive performance, intelligence 
and education were positively correlated with VCDR. In our two-sample 
MR analysis, we identified 14 traits that showed putatively causal effects 
on risk of POAG (FDR P < 0.05; Supplementary Table 14), including mul-
tiple sclerosis, systemic lupus erythematosus, type 2 diabetes (T2D) and 
immune cells (Fig. 5). From colocalization analysis, we identified shared 
genetic regions between the associated traits and POAG (Supplementary 
Table 15). For instance, we identified one genomic region (gene ATXN2) 
with a high posterior probability (PP4 = 0.98) between systemic lupus 
erythematosus and POAG (Extended Data Fig. 8). We performed sensitiv-
ity analyses using different MR methods to evaluate the robustness of the 
MR findings. We observed no evidence of directional pleiotropy effects 
from the MR-Egger intercept (intercepts close to zero). Heterogeneity 
of outlier SNPs was tested using MR-PRESSO (MR pleiotropy residual 
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Fig. 4 | Classification of POAG loci into VCDR- or IOP-specific SNPs. a, Plot 
shows hierarchical clustering of 263 MTAG POAG loci (a multitrait colocalization 
approach is shown in Extended Data Fig. 6). Based on the z scores (dashed line 
shows y = x where the z scores of VCDR and IOP are equal), there is a subset of 
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via VCDR (n = 92, squares). b, Plot displays the effect sizes on VCDR and on POAG 
for the 92 VCDR-specific SNPs. c, Plot displays the effect sizes on IOP and on POAG 
for the 171 IOP-specific SNPs. The dots show the effect sizes of SNPs, and the error 
bars show the 95% confidence interval of the estimations of SNP effect sizes.
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Table 1 | Prioritized drug targets for POAG

Gene Mapping criteria Only 
VCDR 
effecta

Drug name Mechanism of action Diseases under trial

COL11A1 Nearest gene/
MAGMA, TWAS, 
eQTL coloc

No Collagenase clostridium 
histolyticum, ocriplasmin

Collagen hydrolytic enzyme Macular degeneration and macular holes, 
diabetic macular edema, retinal vein occlusion

CYP26A1 Nearest gene, 
TWAS, eQTL 
coloc

Yes Talarozole Cytochrome P450 26A1 inhibitor Acne, psoriasis, inflammation

NDUFS3 MAGMA, TWAS, 
eQTL coloc

No Metformin, ME-344 and others Mitochondrial complex I (NADH 
dehydrogenase) inhibitor

Stargardt disease, muscular dystrophy, 
diabetic retinopathy, cognitive impairment, 
cardiovascular disease, mental disorders, 
cancer

ENG TWAS, pQTL No Carotuximab Endoglin inhibitor Age-related macular degeneration, cancer

CHEK2 Nearest gene/
MAGMA, eQTL 
coloc

Yes Prexasertib, XL-844 Serine/threonine-protein kinase 
Chk2 inhibitor

Cancer

ANGPT1 Nearest gene/
MAGMA, eQTL 
coloc

No Trebananib, AMG-780 Angiopoietin-1 inhibitor Cancer

PRKCE Nearest gene/
MAGMA, eQTL 
coloc

No Midostaurin, KAI-1678 and others Protein kinase C inhibitor, 
protein kinase C epsilon inhibitor

Systemic mastocytosis, cancer, pain, psoriasis, 
liver disease

COL4A1 Nearest gene/
MAGMA, sQTL 
coloc

No Collagenase clostridium 
histolyticum, ocriplasmin

Collagen hydrolytic enzyme Macular degeneration and macular holes, 
diabetic macular edema, retinal vein occlusion

F2 MAGMA, pQTL No Bivalirudin, argatroban and 
others

Thrombin inhibitor Cardiovascular diseases

COL5A2 MAGMA, eQTL 
coloc

No Collagenase clostridium 
histolyticum

Collagen hydrolytic enzyme Macular degeneration and macular holes, 
diabetic macular edema, retinal vein 
occlusion, abnormality of connective tissue, 
stroke

ITGB5 MAGMA, eQTL 
coloc

No Cilengitide Integrin alpha-V/beta-5 
antagonist

Cancer, kidney disease, myelodysplastic 
syndrome

PSMC3 MAGMA, eQTL 
coloc

No Oprozomib 26S proteosome inhibitor Cancer

CRHR1 MAGMA, eQTL 
coloc

No SSR125543, verucerfont and 
others

Corticotropin releasing factor 
receptor 1 antagonist

Social anxiety disorder, irritable bowel 
syndrome, major depressive disorder, 
congenital adrenal hyperplasia

MAPT MAGMA, eQTL/
sQTL coloc

No Gosuranemab, semorinemab and 
others

Microtubule-associated protein 
tau inhibitor

Alzheimer’s disease, progressive supranuclear 
palsy

NR1H3 MAGMA, eQTL/
sQTL coloc

No BMS-852927, hyodeoxycholic 
acid, RGX-104

LXR-alpha modulator, LXR-alpha 
agonist, liver X receptor agonist

Hypercholesterolemia, neoplasm

TGFB3 MAGMA, sQTL 
coloc

No Luspatercept, bintrafusp alfa, 
fresolimumab

Transforming growth factor beta 
inhibitor

Myeloproliferative disorder, myelodysplastic 
syndrome, myelofibrosis, anemia, cancer

ITGB3 Nearest gene, 
sQTL coloc

No Abciximab, tirofiban and others Integrin alpha-Iib/beta-3 
inhibitor, integrin alpha-V/beta-3 
antagonist

Cardiovascular diseases, psoriasis, cancer, 
COVID-19, anemia

HTR1F eQTL coloc Yes Almotriptan malate, 
dexfenfluramine, amisulpride 
and others

Serotonin 1f (5-HT1f) receptor 
agonist, serotonin (5-HT) 
receptor agonist, serotonin 
(5-HT) receptor antagonist

Mental disorders, dementia, migraine disorder, 
kidney disease

PDE6C eQTL coloc Yes Dipyridamole, pentoxifylline 3′,5′-cyclic phosphodiesterase 
inhibitor

Duchenne muscular dystrophy, diabetes, 
diseases of heart, kidney, and liver, cancer, 
anemia, mental disorders

RPE65 Nearest gene Yes Emixustat, voretigene 
neparvovec

Retinoid isomerohydrolase 
inhibitor, retinoid 
isomerohydrolase positive 
modulator

Macular degeneration, diabetic retinopathy, 
Stargardt disease, retinal dystrophy, Leber 
congenital amaurosis

CDC7 Nearest gene Yes BMS-863233, NMS-1116354 Cell division cycle 7-related 
protein kinase inhibitor

Refractory hematologic cancer, neoplasm

TNFSF13B Nearest gene Yes Belimumab, blisibimod and 
others

Tumor necrosis factor ligand 
superfamily member 13B 
inhibitor

Optic neuritis, multiple sclerosis, 
systemic lupus erythematosus and other 
immune-related diseases
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sum and outlier), and the outlier-corrected results were essentially the 
same (Supplementary Table 16). We found no evidence of bidirectional 
effects for the identified traits (except the association between VCDR 
and optic disc area; Extended Data Fig. 9).

Discussion
In this study, we performed a large-scale multitrait POAG GWAS identi-
fying 263 loci in the single largest ancestry group (European ancestry). 
Additional cross-ancestry meta-analysis identified 312 loci, including 
109 that were completely distinct from previously reported loci. Lever-
aging omics data and multiple levels of genetic evidence, we prioritized 
69 putative drug targets for POAG (including 17 with at least two levels of 
supporting genetic evidence), with many linked to genetic loci that act 
at least in part directly via optic nerve head damage and not via raised 
IOP, making them promising ‘neuro-protection’ candidates. Finally, 
we systematically evaluated more than 1,000 publicly available GWAS 
summary statistics and identified several immune disorders that are 
possibly causally associated with POAG.

For genetically correlated traits, multitrait approaches have shown 
utility in boosting statistical power for detecting novel genetic asso-
ciations7,8. To our knowledge, in the current study, we assembled the 
largest-scale genetic datasets to date for POAG, VCDR and IOP, and 
nearly tripled the number of POAG loci6. We strongly replicated most 
of the novel loci using a very large independent dataset (the 23andMe 
study). The high replication rate is likely due to both the increased power 
of MTAG to identify genuine POAG loci and the large sample size of the 
23andMe study allowing for robust estimates for replication. The values 
of mean chi-square were 1.55 and 1.18 in the current MTAG POAG GWAS 
and the previous largest POAG GWAS from the International Glaucoma 
Genetic Consortium (IGGC) (with 16,677 POAG cases and 199,580 con-
trols), respectively, indicating that we have tripled the effective sample 
size for POAG6,7. These results are in keeping with our recent modeling15 
showing that leveraging endophenotypes of POAG is an effective means 
to increase the statistical power to identify novel POAG loci.

Genetic studies have provided new insights to identify therapeutic 
targets. Drug mechanisms with genetic support are two times more 
likely to be approved than those without it16,17. Using multiple levels 
of genetic evidence, we prioritized 17 putative drug targets for POAG 
with at least two levels of genetic evidence in the current study. For 
example, carotuximab targets ENG (Endoglin), which we showed to 
be a potential causal gene for POAG based on the evidence from the 
integration of eQTL and pQTL data. Carotuximab is an Endoglin inhibi-
tor that has been under consideration in clinical trials for treatment of 
exudative age-related macular degeneration18, further highlighting its 
potential for treatment of neurodegenerative ocular diseases. In sup-
port of this, it has been shown that increased expression of Endoglin 

results in retinal neovascularization and retinopathy in mice19. Our MR 
analysis predicting proteomic effects on POAG risk implicated 33 pro-
teins, including TEK, a receptor from the protein tyrosine kinase Tie2 
family. TEK gene mutations have previously been found in congenital 
glaucoma families with variable expressivity20,21. Genomic regions 
that include genes encoding TEK ligands ANGPT1 and ANGPT2 have 
previously been associated with both IOP and POAG8,22. Multiple drugs 
target TEK, including regorafenib, which was trialed for use in various 
diseases, including macular degeneration23.

Current therapies for glaucoma are limited as they rely solely on 
reducing high IOP. Therefore, it is crucial to develop IOP-independent 
therapeutic strategies to counter neurodegeneration in glaucoma. To 
address this, as well as identifying genes such as ENG that likely act via 
IOP, we highlighted several drugs targeting genes that likely affect POAG 
through thwarting optic nerve damage, independent of IOP. In support 
of their possible neuroprotective effects, some of these drugs are in 
clinical trials for treatment of neurodegenerative ocular diseases such 
as retinal dystrophy, atrophic macular degeneration and macular holes 
(for example, drugs such as voretigene neparvovec, emixustat and ocri-
plasmin). In addition, some of these drugs are in clinical trials for treat-
ment of neurodegenerative diseases of the central nervous system such 
as multiple sclerosis (for example, belimumab). For instance, the gene 
TNFSF13B is druggable by TNFSF13B inhibitors which include belimumab, 
blisibimod, tabalumab and atacicept. These drugs were trialed for use 
in optic neuritis, multiple sclerosis, systemic lupus erythematosus and 
other immune-related diseases. Of interest, we also observed a signifi-
cant genetic correlation between POAG and immune-related diseases, 
including lupus and neurodegenerative conditions such as multiple 
sclerosis. Further studies to confirm the causality of these genes in vitro 
and in vivo may support the potential of repurposing these drugs as novel 
neuroprotective treatments for POAG. As to translation to individual 
patients, it is anticipated that as novel drug targets are identified, such 
as those with a neuroprotective effect, they would benefit many patients, 
regardless of the specific set of genetic variants each individual harbors.

We found evidence supporting relationships between complex 
diseases and POAG using MR. For instance, T2D was associated with 
increased risk of POAG and as well as with IOP levels, consistent with 
a previous smaller MR study24 and a meta-analysis of observational 
studies25. However, causality cannot be directly inferred in the case of 
T2D, because it is possible that a portion of the glaucoma cases in our 
study (especially from cohort studies such as UK Biobank (UKB)) were 
diagnosed at a higher rate due to them having had their eyes checked 
for diabetic retinopathy. We conducted a reverse-direction MR study 
(POAG → T2D) to try to assess if overdiagnosis of glaucoma in patients 
with T2D could be a driver of the observed association between T2D 
and POAG; the MR result was null, suggesting that collectively the 

Gene Mapping criteria Only 
VCDR 
effecta

Drug name Mechanism of action Diseases under trial

CD248 TWAS Yes Ontuxizumab Endosialin inhibitor Soft tissue sarcoma, metastatic melanoma, 
neoplasm

GSR TWAS Yes Carmustine, oxiglutatione Glutathione reductase inhibitor, 
glutathione reductase

Neuromyelitis optica, abnormality of blood 
tissues, cancer, myelodysplastic syndrome

LAMB2 TWAS Yes Ocriplasmin Laminin hydrolytic enzyme Macular degeneration, macular holes, diabetic 
macular edema, retinal vein occlusion, uveitis, 
stroke, deep vein thrombosis

This table presents the existing approved drugs that target genes whose effect on POAG is supported by at least two lines of genetic evidence (eQTL, pQTL or proximity to the most significant 
SNPs; n = 17), or genes (n = 8) that affect POAG most likely through VCDR, without an apparent effect on IOP. aFor genes mapped based on pQTL support, VCDR genes are defined as those 
associated with VCDR (FDR ≤ 0.05), but not IOP, in the pQTL MR analyses (Supplementary Table 10). For genes mapped based on proximity to the most significant GWAS SNPs, VCDR genes are 
the nearest genes to the most significant SNPs that are predicted to affect both POAG and VCDR (but not IOP) with a posterior probability > 0.7 in colocalization analysis (Supplementary Table 
6). For genes mapped based on TWAS and eQTL/sQTL colocalization, VCDR genes are those whose best corresponding GWAS SNPs are genome-wide significant for VCDR, but not associated 
with IOP (or only nominally associated with IOP).

Table 1 (continued) | Prioritized drug targets for POAG
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diagnosed POAG individuals in our meta-analysis were not strongly 
enriched for T2D, but interpreting this null MR result is difficult due to 
limited power given that our MR instrument for POAG is derived from 
glaucoma samples from heterogeneous sources. Possible biological 
mechanisms for the effect of diabetes on POAG include compromise 
of the neuronal and glial functions, and retinal metabolism alterations 
that cause retinal vascular dysregulation26.

We also identified several immune disorders that were associ-
ated with POAG, such as multiple sclerosis and systemic lupus ery-
thematosus, suggesting that dysregulation of the immune system 
plays a potential role in glaucomatous optic nerve degeneration. 

Previous observational studies have suggested that POAG was related 
to neuroendocrine-immune abnormalities27–29. In our colocalization 
analysis, we further identified a shared genomics region near ATXN2 
between systemic lupus erythematosus and POAG. Further studies are 
warranted to characterize the potential underlying pathogenic roles 
of inflammation or autonomic dysfunction30,31.

This study has several strengths and limitations. The main strength 
is a substantial improvement in the statistical power to detect POAG 
risk loci. Leveraging the high genetic correlation between POAG, IOP 
and VCDR, we jointly analyzed large-scale GWAS data from these traits 
obtained through international collaborations and large biobanks. In 

T2D T2D (adjusted for BMI)

Parental longevity (father's attained age) Primary sclerosing cholangitis Sarcoidosis (Lofgren's syndrome) Systemic lupus erythematosus
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CD14+ CD16− monocyte absolute count CD25++ CD8+ T cell absolute count Celiac disease Central corneal thickness
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Fig. 5 | Putative causally associated traits with POAG. Plots show 14 traits 
that were associated with POAG from MR (FDR P < 0.05, direction: complex 
traits → POAG). Different outcome traits are shown in different colors. Different 
MR methods are displayed in different line types. The dots show the effect sizes 

of MR estimations, and the error bars show the 95% confidence interval of the 
estimations. The number of SNPs, effect sizes and P values are presented in 
Supplementary Table 14. All tests were two-sided. BMI, body mass index; 95% CI, 
95% confidence interval.
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addition, the MTAG approach we used in this study accounts for inclu-
sion of datasets with sample overlap (for example, the Canadian Longitu-
dinal Study on Aging (CLSA) endophenotypes and case–control dataset), 
minimizing possible inflation in test statistics due to such biases. We also 
observed no evidence for inflation from the FDR measures obtained 
from the MTAG analysis. Second, almost all the identified POAG loci 
were replicated in the 23andMe study, indicating the increased power 
to identify genuine POAG risk loci based on the large-scale multitrait 
approach. Third, we incorporated GWAS data across ancestries, which 
further improved the statistical power of this study and helped identify 
shared risk variants across ancestries. Finally, we integrated transcrip-
tomic and proteomic data using several post-GWAS approaches, which 
allowed us to identify potential causal genes and druggable targets.

A limitation of this study is the preponderance of European 
ancestry samples, which reduces power to detect Asian and African 
ancestry-specific associations. Second, while we have applied various 
post-GWAS approaches, there remains work to be done to character-
ize the mechanisms underlying the large number of newly identified 
loci. Our gene expression-based work uses both retinal tissue as well 
as a wider range of nonocular tissues. However, our proteomics-based 
work is based on plasma. Further proteomic studies using more rel-
evant fluids and tissues to evaluate how these risk loci contribute to 
the pathogenesis of POAG will further shed light on the etiology of 
the disease. More detailed functional experiments are warranted to 
delineate the biological mechanisms of each of the identified loci. 
Finally, we prioritize a list of potential drug targets for POAG based on 
genetic evidence, but additional functional experiments and clinical 
trials are needed to support these findings.

In conclusion, our multitrait POAG GWAS has nearly tripled the 
number of POAG risk loci, with the majority replicated in an independ-
ent cohort. Combining multiomics datasets, we have shown the utility 
of genetic evidence in identifying candidate drug targets for POAG, 
especially ‘neuro-protection’ therapeutic targets. We also identified 
novel associations of POAG with other complex traits, including numer-
ous immune-related diseases. These findings provide insights into 
the pathogenesis of POAG and enable new drug development for this 
common cause of blindness.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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Methods
This study was approved by the QIMR Berghofer Human Research Eth-
ics Committee. In addition, relevant details for each of the participating 
cohorts are provided below and in ‘Ethics statement’ section.

Study populations
In this study, we included genetic and phenotypic data from UKB, 
CLSA, Mass General Brigham Biobank and our previously published 
GWAS for POAG, VCDR and IOP (Fig. 1)6,8,9,32. The detailed information 
for each study is described below.

UKB
The UKB is a large-scale population-based cohort study with deep 
phenotypic and genetic data from half a million participants aged 
40–69 yr from the United Kingdom33. For genetic data, approximately 
488,000 participants were genotyped with more than 800,000 mark-
ers. The genotype platforms, genetic quality controls and imputa-
tion procedures were detailed in a previous study33. In the current 
analysis, we included 438,870 participants who were genetically 
defined as ‘white-British’ ancestry8,32. SNPs with minor allele frequency 
(MAF) > 0.01 and imputation quality score > 0.8 were kept in associa-
tion analysis.

The detailed definitions of phenotypic data, including glaucoma, 
VCDR and IOP, were described in our previous studies8,9,32,34. Briefly, 
glaucoma cases were ascertained from ICD-10 diagnosis, record-linkage 
data from local general practitioners and self-reported previous diag-
nosis; controls were defined as participants who self-reported having 
no eye disease (UKB phenotypic data downloaded in March 2020). In 
our association analysis, we kept 11,239 glaucoma cases and 137,621 con-
trols of European ancestry. We ran generalized mixed models in SAIGE 
(v.0.29.6)35 and adjusted for age, sex and the first ten genetic principal 
components. In the SAIGE analysis, generalized linear mixed models 
with two steps were fitted to account for unbalanced case–control 
ratios and sample relatedness. The first step (fitNULLGLMM) was used 
to estimate variance component and model parameters. The second 
step (SPAGMMATtest) performed single variant score tests with sad-
dlepoint approximation based on logistic mixed models35.

The VCDR measurements of optical nerve head photographs were 
based on CNN models trained on clinical assessments9. Both VCDR 
and vertical disc diameter from approximately 70,000 UKB fundus 
images were used to train CNN models. In our previous work, we have 
shown that AI-based measurements were more accurate and increased 
GWAS power of genetic discovery. In the current study, we performed 
GWASs in 68,240 participants with AI labeling VCDR. The association 
tests were conducted using linear mixed models (BOLT-LMM v.2.3 
(ref. 36)) adjusting for vertical disc diameter, age, sex and the first ten 
principal components.

The IOP GWAS in UKB was based on corneal-compensated IOP 
measurements in 103,914 participants8,32. Linear mixed models were 
performed in BOLT-LMM (v.2.3) adjusting for age, sex and the first ten 
principal components.

CLSA
The CLSA is a cohort study of 51,338 participants aged 45–85 yr from 
Canada37,38. The genetic data (CLSA Baseline Genome-wide Genetic 
Data Release v.2.0) were available for 19,669 participants genotyped 
on the Affymetrix Axiom array. The detailed descriptions of genetic 
quality controls and imputation procedures were presented in the 
CLSA support document (see ‘Data availability’ section). In this study, 
we only included participants of European ancestry based on genetic 
principal components9. SNPs with MAF > 0.01 and imputation quality 
score > 0.8 were kept in association tests.

For glaucoma status, participants were interviewed in-person 
at data collection sites, and those who reported yes to the question 
‘Has a doctor ever told you that you have glaucoma?’ were defined as 

cases34. The remaining participants were defined as controls. In the 
variant association tests, we included 1,358 glaucoma cases and 16,455 
controls using Firth logistic regression in REGENIE (v.1.0.6.2)39 and we 
adjusted for age, sex and the first ten genetic principal components.

In the CLSA, retinal fundus images were available for 29,635 par-
ticipants (106,330 images in total) using a Topcon nonmydriatic retinal 
camera. The optic nerve head parameters were assessed using the AI 
models trained in UKB9. We included 18,304 participants with both AI 
labeling VCDR and genetic data. The association tests were conducted 
by linear mixed models in BOLT-LMM (v.2.3)36, adjusting for vertical 
disc diameter, sex, age and the first ten genetic principal components.

The IOP measurements (corneal-compensated IOP) in the CLSA 
were available for both baseline and follow-up visits on both eyes. 
We removed measurements <5 mm Hg or >60 mm Hg. Values were 
averaged across multiple measurements. In total, 18,421 partici-
pants were retained in the linear mixed models for association tests 
(BOLT-LMM v.2.3) adjusting for sex, age and the first ten genetic prin-
cipal components.

Mass General Brigham Biobank
Mass General Brigham Biobank (formally known as Partners HealthCare 
Biobank) is a biorepository of samples from consented patients at Mass 
General Brigham40 (parent organization of Massachusetts General 
Hospital and Brigham and Women’s Hospital). In this study, cases were 
defined based on a diagnosis available on electronic health records, and 
controls were participants without a recorded diagnosis of glaucoma in 
their electronic health records. In total, 1,415 glaucoma cases and 18,632 
controls were genotyped on an Illumina Multi-Ethnic Global Array 
(MEGA) (Illumina). Participants showing high rates of missingness or 
those deemed ancestry outliers from the European ancestry popula-
tion were removed. Genetic variants with high missingness or extreme 
allele frequencies were removed before imputation using the HRCr1.1 
reference panel (Michigan Imputation server)41. Imputed genotype 
data in dosage format were used for the analysis. Glaucoma GWAS was 
conducted using PLINK v.2.00 with a logistic regression model adjust-
ing for age, sex, genetic principal components and genotype batches42.

The IGGC
The IGGC is a large international consortium established to identify 
glaucoma genetic risk genes through large-scale meta-analysis43,44. For 
POAG, we previously published a large-scale meta-analysis on 16,677 
cases and 199,580 controls of European descent (stage 1 (ref. 6)). In 
the current study, we included POAG GWAS data on 15,229 POAG cases 
and 177,473 controls of European descent after excluding UKB samples 
in our MTAG analysis (described below to optimize the GWAS power 
and to account for imperfect genetic correlation). We also included 
GWAS results for VCDR (n = 25,180) and IOP (n = 31,269) of European 
descent43,44.

POAG GWASs of Asian and African ancestry populations from 
IGGC
In the multiancestry analysis, we included POAG GWAS results from the 
Asian ancestry population (IGGC, 6,935 cases and 39,588 controls) and 
the African ancestry population (IGGC, 3,281 cases and 2,791 controls)6.

23andMe replication
The glaucoma cases in the 23andMe study were defined as those who 
reported glaucoma, excluding angle-closure glaucoma or other types 
of glaucoma. Participants without glaucoma were defined as controls. 
In total, 84,910 cases and 2,736,075 controls were included in the GWAS 
analysis after removing close relatives. In the association tests, logistic 
regressions were performed in additive models adjusting for age, sex, 
the first five genetic principal components and genotype platform 
version. Only the first five principal components were included as a 
previous study has shown that the first five principal components in the 
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23andMe dataset explained more variance than the first ten principal 
components in the UKB, and the total variance in 23andMe reached 
a plateau after the fifth principal component while in the UKB the 
variance was flat after the tenth principal component45. Participants 
provided informed consent and participated in the research online, 
under a protocol approved by the external AAHRPP-accredited IRB, 
Ethical & Independent Review Services (E&I Review). Participants were 
included in the analysis on the basis of consent status as checked at the 
time data analyses were initiated.

MTAG analysis
MTAG is a generalized meta-analysis method to account for sample 
overlap, imperfect genetic correlation and genetic heterogeneity 
across different data sources for the same trait or different traits with 
a high genetic correlation7. In this study, we used a two-stage MTAG 
approach to meta-analyze POAG, VCDR and IOP data. In the first stage, 
input datasets for POAG, VCDR and IOP were included in the MTAG 
analysis separately (three MTAG analyses for POAG and the two endo-
phenotypes, respectively).

In the first stage, for POAG MTAG analysis, we included datasets 
from: (1) 15,229 POAG cases and 177,473 controls of European descent 
excluding UKB samples; (2) 11,239 glaucoma cases and 137,621 controls 
of European descent in the UKB; (3) 1,358 glaucoma cases and 16,455 
controls of European descent in the CLSA; (4) Mass General Brigham 
Biobank with 1,415 glaucoma cases and 18,632 controls.

Similarly, for VCDR, we ran MTAG analysis using data from: (1) 
68,240 participants with VCDR (adjusted for vertical disc diameter) 
in the UKB of European descent; (2) 18,304 participants with VCDR 
(adjusted for vertical disc diameter) in the CLSA of European descent; 
(3) 25,180 participants with VCDR from IGGC of European descent.

For IOP, we conducted MTAG analysis using data from: (1) 103,914 
participants in the UKB of European descent; (2) 18,421 participants 
in the CLSA of European descent; (3) 31,269 participants from IGGC 
of European descent.

In the second stage, the trait-specific MTAG outputs from the first 
stage were further included in MTAG analysis. One key advantage of this 
two-stage MTAG design was reduced computational burden compared 
with running MTAG analysis including all GWAS summary statistics 
for POAG, VCDR and IOP in a single job. In addition, the trait-specific 
MTAG outputs from the first stage also allowed us to evaluate VCDR- 
and IOP-specific genetic effects. In our analysis, after filtering out SNPs 
with MAF < 0.01, 7,259,040 SNPs were kept in the final MTAG output.

GWAS and cross-ancestry meta-analysis
The association tests in each cohort for various outcomes were 
described in ‘Study populations’ section (above). The multiances-
try meta-analysis was performed using the fixed-effect inverse 
variance-weighted method (METAL software 2011-03-25 release46) 
combining POAG MTAG output of European ancestry and POAG GWASs 
of Asian and African ancestries.

Definition of independent loci and novel POAG loci
Independent loci were selected using the PLINK clumping method with 
P value threshold at 5 × 10−8, clump r2 0.01 and a window of 1 Mb for the 
index variant. ‘Novel’ POAG loci were defined as independent loci that 
were not identified in our previous cross-ancestry POAG GWAS6 or 
MTAG GWAS8 (not within ±500 kb of previously reported lead SNPs).

Proportion of familial risk explained
The proportion of familial risk explained was computed as the sum of 
p × (1 − p) × b2/loge(9.2) over all independent genome-wide significant 
SNPs (as defined in ‘Definition of independent loci and novel POAG 
loci’), where p is the allele frequency, b is the log odds ratio and 9.2 is 
the increased risk in first-degree relatives, as estimated in a previous 
study47,48.

Rare variant association analysis from exome sequencing
We compared the common POAG SNPs identified in our MTAG approach 
with rare variant association results from exome sequencing based on 
454,787 UKB participants12. The exome sequencing single variant and 
gene-based association results for glaucoma were obtained from the 
GWAS Catalog (GCST90079909 and GCST90077754). Significant rare 
variants or genes were defined as having P values that passed FDR < 5% 
based on the Benjamini–Hochberg method49.

Gene-based and pathway analyses
We conducted gene-based and pathway analyses in MAGMA (v.1.08) 
as implemented in FUMA (v.1.3.6a)50,51. In the gene-based analysis, 
the association P values of SNPs from GWAS summary statistics were 
mapped to 18,685 genes, and the derived gene-based P values were 
adjusted using the Bonferroni method to account for multiple testing 
(P < 0.05/18,685 = 2.68 × 10−6). In the pathway analysis, the gene-based 
results were mapped to 15,484 curated gene-sets, and the P values of 
pathway analysis were adjusted using the Bonferroni method (P < 0.0
5/15,484 = 3.23 × 10−6).

Assigning POAG loci into VCDR- or IOP-specific effects
As two key endophenotypes, VCDR and IOP are likely to play distinct 
roles in the pathological mechanisms of POAG. To investigate the puta-
tive role of the identified POAG loci, we applied a hierarchical clustering 
method to the genetic effects of POAG loci in VCDR and IOP (effect 
sizes and z scores). Based on the z scores from VCDR and IOP GWASs, 
the clusters were defined as VCDR- and IOP-specific SNPs. We also 
performed a multitrait colocalization analysis (HyPrColoc method) to 
assign POAG loci into VCDR- or IOP-specific effects52. In the multitrait 
colocalization analysis, loci with a high posterior probability support-
ing a colocalization of POAG and VCDR were defined as VCDR-specific 
SNPs. Similarly, loci with high posterior probability for POAG and IOP 
were defined as IOP-specific SNPs.

Colocalization analysis with eQTL and sQTL data
To prioritize causal genes for the MTAG POAG GWAS loci, we applied 
the Bayesian-based colocalization method eCAVIAR53 to each GWAS 
locus and all overlapping cis-eQTLs and cis-sQTLs from 49 GTEx tissues 
(v8)54 and cis-eQTLs from peripheral retina55. A colocalization posterior 
probability above 0.01 was considered significant based on simula-
tions53. To minimize false positive results, we removed colocalizing 
GWAS locus–eQTL/sQTL–gene–tissue results where the eQTL/sQTL 
and GWAS signals did not pass the following significance cutoffs: eQTL/
sQTL FDR < 0.05 or P < 10−4 or GWAS P < 10−5. Supplementary Tables 7 
and 8 present the summary of the colocalization results for the MTAG 
POAG GWAS loci tested from the European subset and multiancestry 
meta-analyses, respectively. The colocalizing statistics reported in 
Results section are only for the GWAS loci that replicated in 23andMe 
using Bonferroni correction.

TWAS
We performed TWAS analysis using FUSION software56 to prioritize 
potential causal genes using gene expression data from the Eye Geno-
type Expression database55 and MTAG POAG GWAS summary statistics. 
In the TWAS approach, SNPs and gene expression data were used to 
train gene expression predictive models, which were then used to 
impute gene–trait association using large-scale GWAS summary sta-
tistics based on reference data56.

PWAS
PWAS is an approach to evaluate the associations of genetically pre-
dicted protein levels and disease outcomes. In PWAS, SNPs and pro-
tein expression data were used to train protein expression predictive 
models, which were further used to impute protein–trait associations 
using GWAS summary statistics57. In the current study, we obtained 
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predictive protein weight files from 7,213 samples and 1,992 plasma 
proteins in European Americans57.

MR analysis
MR analysis was used to identify plasma proteome or complex diseases 
or traits that were associated with POAG. We performed two-sample 
MR analysis to leverage GWAS summary statistics for exposures 
and outcomes that were derived from different studies or datasets. 
For exposures with only one SNP as the genetic instrument (that is, 
plasma proteins), the Wald ratio method was used in the MR analysis. 
The inverse variance-weighted (MR-IVW) method was used when at 
least two SNPs were available to perform a weighted linear regression 
model58. We also conducted a series of sensitivity MR analyses to assess 
the robustness of MR findings that allow violations of MR assump-
tions, including weighted mode, weighted median and MR-Egger59–61. 
Typically, at least three SNPs were required for these sensitivity MR 
methods. We used the intercept term from the MR-Egger regression 
to evaluate directional horizontal pleiotropy effects (that is, intercept 
close to zero and P > 0.05)60. The MR pleiotropy residual sum and 
outlier (MR-PRESSO) method was performed to identify outlier SNPs 
(MR-PRESSO outlier test) and assess the overall heterogeneity of the 
MR estimates (MR-PRESSO distortion test)61.

MR mapping the effects of plasma proteome on risk of POAG
To facilitate the discovery of drug targets for POAG, we integrated 
plasma proteome and POAG genetic data in an MR framework. Briefly, 
28,191 plasma pQTLs covering 4,719 plasma proteins in 35,559 Iceland-
ers62 were used as genetic instruments to evaluate putative causal asso-
ciation between plasma proteins and risk of POAG. We applied several 
different MR methods with different assumptions and advantages, 
including Wald ratio method, MR-IVW method, weighted median, 
weighted mode and MR-Egger.

Drug target prioritization
We used Open Targets63 to identify drug target genes and investi-
gate the relevance of the corresponding drugs based on their cur-
rent approved use or clinical trials for other related diseases such as 
neurodegenerative retinal diseases. We prioritized druggable genes  
with at least two of the following sources of genetic evidence: (1) 
proximity to the most significant variants, or genes significant in the 
MAGMA analysis; (2) genes with eQTL evidence in retina (that is, those 
that were significant in the TWAS analysis); (3) eQTL/sQTL colocaliza-
tion in 49 GTEx tissues and retina, investigated using the approach 
implemented in eCAVIAR; and (4) genes with pQTL evidence in plasma 
(based on the MR framework for the plasma proteome described 
above). In addition, to identify drugs with potential neuroprotec-
tive effects, we also prioritized drugs for VCDR-specific genes (that 
is, those associated with VCDR but not IOP) based on the multitrait 
colocalization and plasma proteome MR analyses for IOP and VCDR, 
as described earlier.

Phenome-wide approach identifies genetic correlated traits 
with POAG
We obtained 1,347 publicly available GWAS summary statistics64 to 
systematically evaluate genetically correlated traits with POAG, VCDR 
and IOP. Linkage disequilibrium score regression was first used to esti-
mate bivariate genetic correlation65. We then performed two-sample 
MR analysis to identify putative causally associated traits with POAG, 
VCDR and IOP. The MR methods were described in ‘MR analysis’ sec-
tion (above). From MR analysis, associated traits with FDR < 0.05 were 
prioritized to account for multiple testing. For the identified traits, 
we further performed reverse-directional MR analysis to evaluate the 
effects of POAG, VCDR or IOP on the associated traits. This analysis can 
identify ‘bidirectional causality’ which may reflect a common pathway 
affecting both the exposure and the outcome66.

Shared genomic regions complex traits/diseases and POAG
For the associated complex traits/diseases from the MR analysis, we 
further conducted a Bayesian colocalization analysis using COLOC 
(v.5.1.0) to evaluate the shared causal genomic regions67,68. The Sum of 
Single Effects (SuSiE) regression-based colocalization (COLOC-SuSiE) 
was used where possible to account for multiple causal variants in a 
region, but falling back on COLOC-single when SuSiE cannot identify 
any credible sets68. The EUR samples in the 1000 Genomes phase 3 data 
were used to calculate the linkage disequilibrium reference panel68. In 
the colocalization analysis, a posterior probability of H4 (association 
with both traits) with PP4 > 0.6 was used to support a shared causal 
variant67.

Ethics statement
This study was approved by the QIMR Berghofer Human Research 
Ethics Committee. In addition, relevant details for each of the par-
ticipating cohorts are provided below: UK Biobank: The UK Biobank 
study was approved by the National Health Service National Research 
Ethics Service (ref. 11/NW/0382) and all participants provided writ-
ten, informed consent to participate in the UK Biobank study. Infor-
mation about ethics oversight in the UK Biobank can be found at  
https://www.ukbiobank.ac.uk/ethics/. CLSA: The CLSA abides by 
the requirements of the Canadian Institutes of Health Research. 
The protocol of the CLSA has been reviewed and approved by 13 
research ethics boards across Canada. A complete and detailed 
list is available at: https://www.clsa-elcv.ca/participants/privacy/ 
who-ensures-high-ethical-standards/research-ethics-boards. FinnGen: 
The Ethical Review Board of the Hospital District of Helsinki and Uusi-
maa approved the FinnGen study protocol (HUS/990/2017). Mass 
General Brigham Biobank: Participants in the Mass General Brigham 
Biobank provided informed consent at sign up and ethics approval 
was obtained from the Human Research Committee of Mass General 
Brigham. 23andMe Inc: Participants provided informed consent and 
participated in the research online, under a protocol approved by 
the external AAHRPP-accredited IRB, Ethical & Independent Review 
Services (E&I Review).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
UK Biobank data are available through the UK Biobank Access Man-
agement System at https://www.ukbiobank.ac.uk/. Data are available 
from the Canadian Longitudinal Study on Aging (www.clsa-elcv.ca) for 
researchers who meet the criteria for access to de-identified CLSA data 
(https://www.clsa-elcv.ca/researchers/data-support-documentation). 
The GWAS summary statistics from this study are available for research 
use at https://xikunhan.github.io/site/publication/. Eye Genotype 
Expression data are available at the Gene Expression Omnibus 
(GEO) under accession code GSE115828. The variant-level data for 
the 23andMe replication dataset are fully disclosed in the paper. 
Individual-level data are not publicly available due to participant con-
fidentiality, and in accordance with the IRB-approved protocol under 
which the study was conducted.

Code availability
The following software packages were used for data analyses: 
BOLT-LMM software (v.2.3): https://data.broadinstitute.org/ 
alkesgroup/BOLT-LMM; eCAVIAR: https://github.com/fhormoz/caviar; 
LOCUSZOOM: http://locuszoom.sph.umich.edu/; LD score regression 
software: https://github.com/bulik/ldsc; METAL software (2011-03-25 
release): http://csg.sph.umich.edu/abecasis/Metal/; MTAG (v.1.0.8): 
Multi-Trait Analysis of GWAS https://github.com/omeed-maghzian/
mtag; PLINK software (v.2.00): http://www.cog-genomics.org/plink2; 
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R: https://cran.r-project.org/; REGENIE software (v.1.0.6.2): https://
rgcgithub.github.io/regenie/overview/.
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Extended Data Fig. 1 | Comparison of the effect sizes for genome-wide 
significant independent SNPs by known loci and previously unknown loci. 
a, Plot showing effect sizes for known genome-wide significant independent 
SNPs identified from the POAG multi-trait GWAS in European ancestry versus 
glaucoma GWAS in 23andMe. b, Plot showing 81 previously unknown genome-
wide significant independent SNPs identified from the POAG multi-trait GWAS in 
European ancestry versus glaucoma GWAS in 23andMe. The Pearson’s coefficient 
is 0.94 (P = 1.42 × 10−38). c, Plot showing effect sizes for known genome-wide 
significant independent SNPs identified from the POAG multi-ancestry meta-
analysis versus glaucoma GWAS in 23andMe. d, Plot showing 109 previously 
unknown genome-wide significant independent SNPs identified from POAG 
multi-ancestry meta-analysis versus glaucoma GWAS in 23andMe. The Pearson’s 
coefficient is 0.939 (P = 1.57 × 10−48). For the 81 previously unknown genome-

wide significant independent SNPs identified from the POAG multi-trait GWAS 
in European ancestry, the replication rates in an independent cohort using 
23andMe were: 38% SNPs (n = 31) passed the genome-wide significance level 
(P < 5 × 10−8) in the 23andMe study, 73% SNPs (n = 59) were significant after 
Bonferroni correction (P < 0.00062), and 96% SNPs (n = 78) reached a nominal 
significance level (P < 0.05). For the 109 previously unknown genome-wide 
significant independent SNPs identified from POAG multi-ancestry meta-
analysis, the replication rates in an independent cohort using 23andMe were: 
38% SNPs (n = 39) passed the genome-wide significance level (P < 5 × 10−8) in the 
23andMe study, 66% SNPs (n = 68) were significant after Bonferroni correction 
(P < 0.0005), and 96% SNPs (n = 99) reached a nominal significance level 
(P < 0.05). The dots show the effect sizes of SNPs, and the error bars show the 95% 
confidence interval of the estimations of SNP effect sizes.

http://www.nature.com/naturegenetics
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Extended Data Fig. 2 | Scatterplot of minor allele frequency (MAF) and effect size (absolute value) for the novel loci in the multi-trait POAG GWAS analysis. ‘1’ 
corresponds to novel SNPs; ‘0’ corresponds to known SNPs.

http://www.nature.com/naturegenetics
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Extended Data Fig. 3 | Quantile-quantile plots for POAG GWAS. a, Quantile-
quantile plot for multi-trait POAG GWAS in participants of European ancestry. 
The quantile-quantile plot is based on one million randomly selected SNPs. 
Linkage disequilibrium (LD) score regression intercept is used to assess the 

genomic inflation; the intercept is 0.957 (standard error = 0.013, attenuation 
ratio < 0), and the lambda value is 1.27. b, Quantile-quantile plot for POAG multi-
ancestry meta-analysis. The lambda value is 1.28. Because of the multi-ancestry 
design, LDSC was not performed.

http://www.nature.com/naturegenetics
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Extended Data Fig. 4 | Replication in 23andMe based on quality control 
annotation. Comparison of the effect sizes (log odds ratio) for genome-wide 
significant independent SNPs in our discovery studies and the 23andMe 
replication cohort. a, Plot shows genome-wide significant independent SNPs 
identified from the POAG multi-trait GWAS in the European population versus 
glaucoma GWAS in 23andMe (n = 261 independent SNPs). b, Plot shows genome-
wide significant independent SNPs identified from the POAG multi-ancestry 

meta-analysis versus glaucoma GWAS in 23andMe (n = 302 independent SNPs). 
The two different colors for ‘not pass’ and ‘pass’ represent the quality control 
annotation from 23andMe. Most of the 27 SNPs that did not pass the quality 
control annotated by 23andMe showed high concordance in effect size between 
the discovery and replication cohorts. The dots show the effect sizes of SNPs, and 
the error bars show the 95% confidence interval of the estimations of SNPs effect 
sizes.

http://www.nature.com/naturegenetics
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Extended Data Fig. 5 | Comparison of the effect sizes for 312 POAG genome-
wide significant independent SNPs from multi-ancestry meta-analysis 
against their effect sizes in VCDR and IOP grouped by different P-value 
thresholds. a, Plot showing the comparison with VCDR (n = 312 independent 
SNPs). The x-axis shows the effect sizes in multi-ancestry meta-analysis 
of POAG. The y-axis shows the effect sizes in VCDR. The SNPs are shown in 
different colors based on different P values in VCDR (P < 5 × 10−8; ‘<0.05/312’: 
5 × 10−8 ≤ P < 0.05/312; ‘<0.05’: 0.05/312 ≤ P < 0.05; P ≥ 0.05). b, Plot showing 
the comparison with IOP (n = 312 independent SNPs). The SNPs are shown in 

different colors based on different P values in IOP (P < 5 × 10−8; ‘<0.05/312’: P < 5 
× 10−8 ≤ P < 0.05/312; ‘<0.05’: 0.05/312 ≤ P < 0.05; P ≥ 0.05). The dots show the 
effect sizes of SNPs, and the error bars show the 95% confidence interval of the 
estimations of SNPs effect sizes. In our previous work, we have shown that the 
genetic correlation between VCDR and POAG is 0.5, and many VCDR significant 
loci are not necessarily associated with POAG. In this figure, many POAG SNPs are 
not associated with VCDR, and similarly many VCDR SNPs are not associated with 
POAG.

http://www.nature.com/naturegenetics
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Extended Data Fig. 6 | Classification of POAG loci into VCDR or IOP-specific 
SNPs based on multi-trait colocalization. This scatter plot shows the effect 
sizes of 263 MTAG POAG loci on VCDR (x-axis) and IOP (y-axis). The assigned SNPs 
(IOP and VCDR in different point shapes) were based on a hierarchical clustering 

approach. The different point colors for trait combination show the results 
from multi-trait colocalization. This figure shows a consistent classification of 
POAG loci into VCDR- and IOP-specific SNPs based on the hierarchical clustering 
method and the multi-trait colocalization method.

http://www.nature.com/naturegenetics
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Extended Data Fig. 7 | Bivariate genetic correlation analysis identifies 
24 traits that are genetically correlated with POAG, VCDR or IOP. The 
x-axis shows the genetic correlations and their 95% confidence intervals. The 

y-axis shows the genetically correlated traits. The dots show the effect size 
of Mendelian randomization estimations, and the error bars show the 95% 
confidence interval of the estimations. All tests were two-sided.

http://www.nature.com/naturegenetics
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Extended Data Fig. 8 | Shared genomic region between systemic lupus erythematosus and POAG. The genomic region (gene ATXN2) has a high posterior 
probability (PP4 = 0.98) in the Bayesian colocalization analysis. a, LocusZoom plot for systemic lupus erythematosus. b, LocusZoom plot for POAG.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-023-01428-5

Extended Data Fig. 9 | Reverse-directional Mendelian randomization analysis 
for associated traits with POAG. Plots show the reverse-directional Mendelian 
randomization for traits that were associated with POAG (celiac disease was not 
shown because of the limited number of overlapping SNPs; direction: POAG -> 

complex traits). Different exposure traits are shown in different colors. Different 
MR methods are displayed in different line types. In this reverse-directional MR 
analysis, only the association between VCDR and optic disc area passed multiple 
testing.

http://www.nature.com/naturegenetics
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